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It is easy to find a three-dimensional spacc such that the set-valued
metric projection onto a linear subspace fails to be lower semicontinuous.
There are many papers on the lower semicontinuity of set-valued metric
projections (e.g., [4, 5, 13]). Conditions which guarantee the Lipschitz con-
tinuity of single-valued metric projections are formulated, for example, in
[2,12]. The relative openness of affine maps on convex sets has been
treated as well (see, e.g., [3, 7, 15, 17, 18]), but so far no one has pointed
out its relation to the problems mentioned above.

In this paper we prove that for any proximinal linear subspace M of a
normed linear space X the metric projection of X onto M is lower semicon-
tinuous if and only if the quotient map X — X/M is relatively open on the
closed unit ball of X. A similar assertion concerning the pointwise Lipschitz
continuity of metric projections is stated as well. The results are used to
discuss continuity of some metric projections in both sequence and
function spaces.

If not stated otherwise our notation and terminology are those of [8].
By ¢, {;, and [, we mean the sequence spaces ¢,(7I), {/,({"), and [ (I,
respectively, with I” consisting of the positive integers. Let X be a real nor-
med linear space, M be a closed hinear subspace, and A a subset of X. A
mapping Q from X into another normed linear space is said to be relatively
open on A at xe A if for any neighbourhood V of x in 4, Q(V) is a
neigbourhood of Q(x) in Q(A). Further, Q is said to be relatively open on
A if it 1s relatively open on 4 at any xe 4. For any ¢> 0 and x € 4, the set
{aeA:la—x||<e} will be called e-neighbourhood of x in A. The set-
valued metric projection P,, of X onto M is defined by

Pulx)=peM: |x—p|<ix—ml| for any me M}, xeX.
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The set {xe X:0e P, (x)} will be denoted by P,,'(0). The set M is said to
be proximinal if P,,(x)# ¢ for any x e X; M is said to be Cebysev if P, is
a single-valued mapping defined on X. The projection P,, is said to be
lower semicontinuous (lsc) at x,e X if for any open set G X with
Puy(xg)nG#J the set {xeX: P, (x)nG#J} is a neighbourhood of x,
in X. The projection P,, is said to be Isc if it is Isc at any point of X.

We start with a definition and a plain remark.

(1) DerFINITION.  We shall say that P,, is pointwise Lipschitz Isc at x,, if
there is a constant K such that for any xe¢ X and any m,e P,,(x,) there
exists m e P,,(x) such that |m —m,| < K|x — x,|. We shall say that P,, is
pointwise Lipschitz Isc if it is such at any x, € X.

(2) REMARK. Let M be a proximinal linear subspace of a normed linear
space X. To show that P,, is Isc or pointwise Lipschitz Isc, it suffices to
verify that P,, has that property on the norm one elements of P,,'(0). Let
us take x, € M at first. Then P, (x,)={x,} and for any me P,,(x), xe X,
we have

[m— x| <llm—x]+lx—xol <2]xy— x|

Particularly, P,, is pointwise Lipschitz Isc at x,. Further, let x, € X and
my € P, (xy) be arbitrary. Then x,—m, is an element of P, '(0) and
Puylx —mg)={m—my:me P,(x)} for any xe X. Finally, P,, is positively
homogeneous. The main result is

(3) THEOREM. Let X be a normed linear space, M a proximinal linear
subspace of X, Q:X — X/M the quotient map, U the closed unit ball of X, and
X € P4, '(0) a point of norm one. We define V= {x,—m:me P,(xy)}. Then
P, is Isc at x, if and only if Q is relatively open on U at any point of V.
Moreover, the following two conditions are equivalent:

(1) P, is pointwise Lipschitz Isc at x, (see Definition (1));
(1) there exists ¢ >0 such that for any xeV and any ¢€(0,2], QO
maps the g-neighbourhood of x in U at least onto the ce-neighbourhood of

Q(x) in Q(U).

(4) CorOLLARY. Let X, M, Q, and U be as in (3). Then P, is Isc if and
only if Q is relatively open on U. Suppose in addition that M is Cebysev.
Then P, is pointwise Lipschitz continuous if and only if for any xe U there
is ¢ >0 such that for any € (0, 2], Q maps the e-neighbourhood of x in U at
least onto the ce-neighbourhood of Q(x) in Q(U).
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Proof of (3). Let mye Py(x,) and 0<d<e<2 be such that if xeX
and || x — x, || <8, then there exists me P,,(x) with |m —m, | <& We show
that Q maps the 2e-neighbourhood of x,—ni, in U at least onto the o-
neighbourhood of Q(x,) in Q(U).

Take an arbitrary y e Q(U) with ||y — Q(x,)[ <d. As Q is quotient map,
there exists xeQ '(y), [[x—x, <d. As assumed, we can choose
me Py(x), |m—my|| <e Since m is best approximation of x in M,
[x—mll=1Q(x)} <1, hence x —m is an inverse image of y in U. Finally,
[x=m) = (xg—mo) | < x—x¢ | + [ m—myll <2

Thus we have proved that if P,, is Isc at x;, then Q is relatively open on
U at any point of V. Moreover, the implication (i) = (ii) follows from this
since we can put ¢ =(2K) ', where K> 1 is a constant as in (1).

To prove the inverse implication let mge€ P, (x,), ¢€(0,2], and
o€ (0, 1/2¢7] be such that Q maps the ¢-neighbourhood of x,—m, in U at
least onto the 24-neighbourhood of Q(x,) in Q(U). Let x € X be such that
[x—xol <o. We will find meP,(x) with |m—my] <2 We put
Q(xg) =y, Q(x) =y, and | p[| = There is 0 € P,(x,), hence ||y, =1. Of
course, |y — y, I <, whence |2 — 1| < J (and particulary x 5 0 since < 1).
Define v, =o 'v. Then |y, — voli < |y, —v| + Iy — ol <26, hence we can
choose x,€Q '(1)nU such that {x,—(x,—my)|| <e Setting
m=x—oax, we claim that m is a desired element.

First Q(m)=y—ay, =0, whence meM. Further, meP,(x) for
[x—ml=alx | <a=|Q(x)]. Finally, we can write m—m,=
(x = xo) +(xg— X, —mg)+ (x —ax,), hence [[m—mgl| <0+e+06<2e.

Thus we have proved that if Q is relatively open on U at any point of ¥
then P,, is Isc at x,.

Suppose further that the condition (ii) is fulfilled with a certain constant
¢<1. Let xeX be such that 0 < ||x—x,| <2/3c. Put ¢=3¢ " "||x—x,|
and 0=1/2cc. Then | x—x,| <0 and applying the fact just proved we
obtain dist(P,,(x), my)<6c '||x—x,|. Now let xeX be such that
| x— x|l >2/3¢c and me P,,(x) be arbitrary. Since |[m—x| =|Q(x)| <
Ix|<t+]x—xoll and [[my—xo <lx,ll=1, we get [m—myl <2+
2l x—xoll <3¢ '"+2)||x—x,] which completes the proof of the
implication (ii) = (i).

Proof of (4). We show that Q is relatively open on U at any x e U such
that either |x| <1 or 0¢ P,(x). If x is such a point, then the norm of
y=0Q(x) is less than one. Choose ueQ '(y), [ull<1—3¢c with some
¢>0. For any ¢€(0,2] define v=v(e)=x+1/3e(u—x). Then
lv—x||<2/3¢ and |v|| < (1 —1/3¢) [ x||+1/3eljull <1 —ce. Hence the e-
neighbourhood of x in U contains the ce-neighbourhood of v in X which is
carried by Q onto the ce-neighbourhood of y in X/M. The rest of the proof
follows from Theorem (3) and Remark (2).
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It is not difficult to show that if U is a finite-dimensional polyhedron
then any affine map on U is relatively open on U. To generalize this fact we
introduce

(5) DeFINITION. Let U be the closed unit ball of a normed linear space
X and ue U be an arbitrary point of norm one.

(i) We shall say that U is polyhedral ((PH) in short) at u if there
exists >0 and a finite set Fc X*, | f|l=f(u)=1 for feF, such that
whenever xe X, |x—ul| <o and f(x)< 1 for all f € F, then xe U. We shall
say that X is a (PH)-space if U is (PH}) at any point of norm one.

(i) We shall say that U is quasi-polyhedral ((QP) in short) at « with
6 (0>0) if any point of the d-neighbourhood of u in U belongs to a line
segment [u, x] of length at least & with some xe U. When it is not
necessary to point out the value of 5, we shall say just that U is (QP) at w.
It can be easily seen that X is a (QP)-space in the sense of [1] if and only
if Uis (QP) at any ue U of norm one.

Clearly, if the closed unit ball U of a normed linear space X is (PH) at a
point u, then it is (QP) at « (with the same constant d as in (5) (i)), whence
u is not a cluster point of extreme points of U. Consequently, a finite-
dimensional space X is a (PH)-space if and only if U is a polyhedron (ie.,
the set of extreme points of U is finite).

For any set I'# (¥, the sequence space ¢y(/) is a (PH)-space (notice that
for any wecyl) with [u|=1 one can take d=1—sup{|u, | vel,
lu,| <1}). The product of a family {X_|.., of (PH)-spaces in the sense of
co(I") is a (PH)-space. Clearly, any linear subspace of a (PH)-space 1s again
a (PH)-space.

The space ¢, with the modified norm || (x,)| =|x,{ +sup{|x,l:n>1}is
an example of a (QP)-space which is not a (PH)-space.

We proceed with a fact that can be seen forthwith.

(6) Remark. Let M be a closed linear subspace of a normed linear
space X, U the closed unit ball of X, and Q: X - X/M the quotient map.
Then M 1s proximinal if and only if Q(U) 1s closed (i.e., for any ye X/M of
norm one there is at least one element xe Q ~'(y) of the same norm).
Further, M is Cebysev if and only if for any y € X/M of norm one there is
exactly one inverse image of the same norm.

The idea of the fist part of the following lemma comes from [17].

(7) LEmMa.  Let X, M, Q, and U be as in Theorem (3), W=Q(U), ve W
satisfv |y =1 and V=Un~Q '(y)

(1) If Wis (QP) at y with some 6 >0, then for any ¢€(0,2] and
xe V., O maps the ¢-neighbourhood of x in U at least onto the 1/2d¢-
neighbourhood of v in W.
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(1) If there exists xe€V such thar U is (QP) at x and Q is relatively
open on U at x, then W is (QP) at v.

Proof. Notice that W is closed by (6). To prove (i} let © be an arbitrary
point of W: we shall find a ue U~ Q '(v) within the distance 26 '|v— v
from x. Since W is (QP) at y with ¢, there is we W with [ w—y| =& such
that v =y + t(w — ) with re [0, 1 ]. Note that 1 <4 '|/v— v|l. Now choose
an arbitrary inverse image ¥ of w in U and put = x + (¥ — x).

To prove (i1) suppose that U is (QP) at some x e V with a d > 0 and that
QO maps the 1/29-neighbourhood of x in U at least onto the &-
neighbourhood of v in W for some ¢>0. Then any element v, € W with
0<le,— | <eis the midpoint of a nontrivial linear segment [y, v,] for
some v, € W.If ||v, — v |l <&, we can proceed analogously until ||z, — | =«
with v, e W, where v, = 1/2(y+ v, ) fori=1. 2., n—1

The following elementary lemma will be used later.

(8) LEmMMA.  Let X, Y be normed linear spaces, Q: X > Y a linear open
mapping, Fc X* « finite set, and H the intersection of halfspaces
IXeEX f(x)<KO0] for feF. Then Q is relatively open on H ar 0.

Proof. Observe at first that Q is relatively open on H, =/ '(0) for any
feF. To see this, denote Z= Q(H,) and consider the case Z# Y at first.
Then Q '(z)< H, for any z€ Z and the assertion is trivial. Now, suppose
that Z=Y. Let v, ef '(1) be arbitrary and x,eH, be such that
Q(xy)=0(x,). Since for any xe X the point x + f{x) (x,— x,) Is an inverse
image of Q(x) in H,of norm (I + [ /] [ix,—x, )i x| at most, it is enough
to use the openness of Q on X.

Further, let v € Q(H) be close enough to 0. There exists xe O '( ) close
to 0 in X. Suppose that x ¢ H. We choose some x€ Q '(v)n H and define

s=supi{t:v+t{x—x)e H| and Xo= X+ s(x—X).

Then Q(x,)=y and x, € Hn H, for some f e F. We proceed by induction
on the cardinality of F. If F= {f}, then H, © H and we can use the relative
openness of Q on H, to find an inverse image of y = Q(xy)e Q(H,) close to
0 in H. Let card F> |. Considering the restrictions of Q on H, (f € F} we
can suppose the induction hypothesis: for any f € F, Q is relatively open on
H, n H at 0. Then the relative openness of Q on H at 0 follows immediately
from the arguments mentioned above and from the induction hypothesis
since we have proved in fact that for any ye Q(H) either 0 '(y)c H or
veQ(Hn H,) for some feF.

(9) THEOREM. Let M be a proximinal linear subspace of a normed linear
space X and x, € P,,"(0) a point of norm one such that the closed unit ball of
X is (PH) at x,. Then P, is pointwise Lipschitz lsc at x.
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(10) CorOLLARY. Let X he a linear subspace of ¢, and M be a
proximinal linear subspace of X. Then the metric projection of X onto M is
pointwise Lipschitz Isc.

Proof of (9). Let U and Q be as in Theorem (3). Since U is (PH) at x,,
there exists a >0 and a finite set F< X*, [[f| =/(x,)=1 for f e F, such
that the d-neighbourhood of x; in the set E= {xe X: f(x)< 1 forall feF)
coincides with the d-neighbourhood of x, in U. Applying Lemma (8) with
H={x—x,:xeE} we obtain that for any ¢e(0,8), Q maps the &
nelghbourhood of x, in U onto a neighbourhood of Q(x,) in Q(E)>Q(U);
hence Q(U (QP) at Q(x,) by Lemma (7) (ii), thus P,, is pointwise
Lipschitz lsc at Xy by Lemma (7) (i) and Theorem (3).

Next we shall deal with subspaces of /,(I") or ! ,(I') of a finite codimen-
sion. Let M be a closed linear subspace of a finite codimension m in /,, for
example. Then M is the set of all sequences (x,) €/, such that

Y ay'x,=0 (i=1,., m),

n

where a! are suitable constants. Let U denote the closed unit ball of I,
and let Q:/, —>{,/M be the quotient map Then the set Q(U) can be
identified with the set W< R™, =1{>,x,bh,: Z,I|\,,\<1,, where
b,={(a", a?,.., a) for any n. Using induction on m, it can be proved
that W coincides with the convex hull of vectors +b,,, whence the set Q(U)
is easy to represent. In the following Theorem the set Q(U) is used to
characterize the lower semicontinuity of P,, in such a case.

(11) THEOREM. Let I'# & be an arbitrary set and suppose that one of
the following cases occurs:

(1) X=I1(I") and M is a proximinal linear subspace of X of finite
codimension;

(i) X=[1 () and M is a w* — closed linear subspace of X of finite
codimension.

Let Q: X — X/M be the quotient map and let U be the closed unit ball of
X. Then P, is Isc if and only if Q(U) is a polvhedron (i.e., the set of extreme
points of Q(U) is finite). Further, if P, is Isc at some xe X then P, is
pointwise Lipschitz Isc at x.

We start the proof with a lemma that will be useful later as well.
(12) LEmMA (cf. [9, Lemma 1]). Let X, M, Q, and U be as in (11).

Then any extreme point of the set Q(U) is the image of an extreme point of
U
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Proof. In the case (11) (i1) the statement follows immediately from the
assertion (3) of [9, Lemma 1 ]. However, in the case (11) (i) the subspace
M is not admissibly compact in the sense of [9] in general (M is not
w* —closed in general); nevertheless, the arguments needed for the proof
still work since the space X =/,(I") has the so called Krein—-Milman
property (see, e.g., [111]), i.e., any bounded closed convex nonempty subset
of X has at least one extreme point.

Indeed, let = be an extreme point of Q(U), ¢ be an extreme point of the
set V=0 '(z)n U, and suppose that v=1/2(v, + v,) for some v,, v, € U.
Then z=1/2(Q(v,) + @(v,)). Since = is an extreme point of Q(U) we
obtain v, v, € IV which implies v, =v, =10 as v is an extreme point of V.
Hence v is an extreme point of U.

Proof of Theorem (11). The set K= Q(U) is a finite-dimensional com-
pact convex set by Remark (6). If K is a polyhedron then P, is Isc by
Theorem (3), Lemma (7) (1), and Remark (2).

Let P,, be Isc at some xe P,,'(0) of norm one. By Carathéodory’s
theorem, Q(x) is a (finite) convex combination of extreme points of K.
Thus. in view of Lemma (12), there is a point ue Q '(Q(x)) which is a
convex combination of extreme points of U. It is easy to see that in both
cases (i) and (ii), U is (QP) at any such a point u. Hence K is (QP) at Q(x)
and P, 1s pointwise Lipschitz Isc at x by Theorem (3) and Lemma (7).
Suppose now that K is not a polyhedron. Let y be a cluster point of
extreme points of K and let xe Q '(y)n U be arbitrary. Then K is not
(QPYat y, |x| =|ly| =1, and 0€ P,,(x), whence P,, is not Isc at x by the
arguments mentioned above. To finish the proof it is enough to use
Remark (2).

(13) CorOLLARY. Let M be a w* —closed linear subspace of [,(I') of
finite codimension. Then P,, is pointwise Lipschitz Isc.

Proof. Denote X=1[,(I'). Let Q and U be as in (11). It is enough to
show that K= Q(U) is a polyhedron (Theorem (11)). Let v be an extreme
point of K. By Lemma (12), y = Q( £ ¢,) for some index y, where (e.),_ris
the canonical basis of X. Since the only w*-cluster point of any infinite sub-
set of the canonical basis of X is 0 and Q is continuous from the w*-
topology (M 1s of finite codimension and w*-closed in X), we obtain that
| Q(e.}l > 1/2 for a finite number of indices 7 at most. Thus the set of
extreme points of K is finite.

In {67 an example of a Cebysev subspace of /, of codimension two with
discontinuous metric projection is given. Theorem (3) together with
Lemma (7) enable us to construct without tedious computation an example
of a Cebysev subspace M of /, of codimension two such that P,, is discon-
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tinuous at infinitely many points of P,,'(0) of norm one. Moreover, we can
construct the following

(14) ExampLE. Let /" be a set of the cardinality of continuum. Then
there exists a CebySev subspace M of /,(I") of codimension two such that
P, is discontinuous at any point outside M.

Construction. We can put I'= [0, 7). Let (e.), . be the canonical basis
of X=1,(I"). To define a continuous linear mapping Q: X — R” it suffices to
set Qe )=(cosy, siny), yel. It follows from Remark (6) that
M=Q '(0)is a Cebysev subspace. It is easy to check that the unit ball of
X is (QP) at any point +e, (y€/'). Obviously, these points are the only
points in P;,'(0) of norm one. Since the circle in R’ is not (QP) at any
point of its boundary, P,, is discontinuous at any point outside M by
Theorem (3), Lemma (7) (i1), and Remark (2).

However, in the case X' =/, such an example is impossible since we have
the following

(15) PROPOSITION. Let M be a proximinal linear subspace of 1, of finite
codimension. Then P, is (pointwise Lipschitz) Isc at any point of a certain
set which is open and dense in .

Proof. We abbreviate X =1/,. Let n be the dimension of X/M, ¢ and U
be as in (11). The set K=Q(U) is closed by (6). We denote by dK the
boundary of K. Let G be the set of the points y € dK such that there exists a
hyperplane H supporting K at y such that y is an interior point of Hn K
with respect to H. Obviously G is open in K. We shall prove that G is
dense in dK. Let y e (CK)\G be arbitrary. We choose a hyperplane H sup-
porting K at y. Since y is a boundary point of at most (# — 1)-dimensional
compact convex set Hn K, y is a convex combination of at most n— 1
extreme points of K by the theorem of Carathéodory [ 16, p. 10]. However,
the linear span of less than n points meets ¢K in a set nowhere dense in ¢K.
By Lemma (12) the set of extreme points of K is countable at most, hence
the set (¢K)\G is of the first category in ¢K and thus it is nowhere dense in
¢K. It is clear that K 1s (QP) at any point of G and that any point of the set
Q0 '"(G)nU belongs to P,,'(0) because G<=?K. Define E= {iy:7€eG,
+>0}. By Theorem (3), Lemma (7) (i), and Remark (2), P,, is pointwise
Lipschitz Isc at any point of the set ¢ '(E); this set is open and dense in X
since £ is open and dense in X/M.

(16) Remark. Let M be a Cebysev linear subspace of a normed linear
space X of codimension two. Then P, is pointwise Lipschitz continuous at
any point x ¢ P,,'(0) of norm one which is not an extreme point of U (we
use the notation as in Theorem (3)). Indeed, if x is such a point, then Q(x)
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is not an extreme point of a two-dimensional set Q({’) by Remark (6), thus
O(U) 1s (QP) at Q(x) and we can apply Theorem( ) and Lemma (7) (1).
Particulary. if M is a Cebysev linear subspace of /, of codimension two
then the set of points xe P,,'(0) of norm one such that P, is discon-
tinuous at x is countable at most. However, there is a Cebysev linear sub-
space of /, of codimension three for which an analogous assertion fails.

For example, let M be a subspace of /, defined by M =0 '(0), where
Q: 1, - R is the linear continuous mapping defined on the elements of the
canonical basis (¢,) of /, by

Q((’1): (l., 0. 0)~
Q(e;)=1(0,0, 1),

and

.
Q((’”)=(Cos—,sin—.0) for n=3.4..

H H

Let U denote the closed unit ball of /, and K= Q(U). It is not difficult to
prove (by the use of support hyperplanes of K) that any point of the boun-
dary of K has exactly one pre-image point in U. Thus, by Remark (6), M is
a Cebysev subspace of /,. Further, it is elementary to check that U is (QP)
at any point which is a finite combination of elements of the basis (¢,) and
that K is not (QP} at any point of the segment {(7,0,1—1):7€(0, 1]}
Hence P,, is discontinuous at any point of the segment {re, + (1 —1)e,:
te(0, 1]} by Theorem (3) and Lemma (7) (i1} (observe that this segment
lies in P,,'(0) since its image is contained in the boundary of Q(U)).

Finally, we present a specification of Theorem (11) in the case that M is
a w*-closed subspace of /, of codimension two to show that the analogy to
Corollary (13) fails in this case.

(17) ExaMpLE. Let {qa,). (h,) be absolutely summable sequences of real
numbers and M be the subspace of/ consisting of all bounded sequences
(x,)such that 3 ,a,x,=0and Y ,b»,x,=0. Then P,, is Isc if and only if the
set {(a,, b,)} = R? does not contain an infinite subset of pairwise indepen-
dent vectors.

To show this let Q:1, - R be the mapping defined by
Q(x X,a,x,,Y,bh,x,) for any x=(x,)e/,. In the case that the
codlmensmn of M in l, is one the assertion follows easily; hence suppose
that Q is a surjection. If R” is given the norm with the unit ball Q(U).
where U is the closed unit ball of /, . then Q can be identified with the
quotient map associated with M. Of course, M i1s proximinal and Q(U) is
closed. Any linear functional / on R® can be identified with a pair of real
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numbers («, ) so that f{Q(x))=aY, a,x,+LY, b, x, =, (2a,+pb,) x,
for all x=(x,)e/,. Thus f attains its supremum on Q(U} at Q(x) if and
only if x,=sign (xa, + fb,) for any » such that xa, + f8b, #0.

Suppose at first that the set {(a,, b,)} does not contain an infinite subset
of pairwise independent vectors. Then there exists a finite set F < R” such
that for any (o, f)e R® there is (o, By)€ F with sign (aya, + Bob,) =
sign (2a, + fb,) for any n. Hence for arbitrary y € @(U) a functional attain-
ing its supremum on Q(U) at y can be found in the finite set F, thus Q(U)
1s a polyhedron and P,, is Isc by Theorem (11).

Suppose now that there is an infinite subset of {(a,, b,)} consisting of
pairwise independent vectors. Then there exists an mﬁmte set F< R” such
that aa,+ fb,#0 for any n and any (o, f)e F, and whenever («;, f3;)
(i=1,2) are two different elements of F then sign (a,a,+ f,bh,)#
sign (a,a, + f,b,) for at least an index # (consider the angles between the
vectors (a,,, b,,) and vectors (a, 8) e R?). Suppose that the linear functionals
on R? which are given by two different elements (x,, ;) (i=1,2) of F
attain their supremum on Q(U) at the same point . Then for any point
xeQ Yy)nU we have x,=sign (a,a,+ fB;b,) for any n and i=1,2,
which contradicts the deﬁnmon of F. Since any linear functional on R’
attains its supremum on Q(U) at an extreme point of Q(U) we obtain that
the set of extreme points of Q(U) is infinite so that P,, is not Isc by
Theorem (11).

APPLICATIONS IN FUNCTION SPACES

In the last part of the paper we show certain applications of the main
theorem and Lemma (7) (i) in function spaces. We present some notes con-
cerning discontinuous metric projections in function spaces at first.

There is a Cebysev subspace M of codimension two in C[0, 1] with Py,
discontinuous [14, Lemma 7.4 on p. 89 and Remark on p. 87], thus P,,
fails to be Isc.

Consider now a subspace M of C[0,1] of the special form

={feC[0,1]:f(s;)=f(s,)=0} for some s,,5,€[0,1]. Then M is
prox1mmal by Remark (6) since the quotient map Q can be identified with
the mapping Q:C[0,1]—-R?% Q(/)=(f(s1), f(s;)) for feC[0,1].
Moreover, P,, is Isc for any such subspace M (this follows, for instance,
from Proposition (19) below because the space C[0, 1] has the property
(21)). Example (18) (i) shows that the situation becomes more complicated
if we consider the metric projection of a linear subspace X of the space of
continuous real valued functions on a compact space S onto a proximinal
subspace M of X of the form M= {feX:f(s,)=/(s,)=0} for some s,,
s, €S (it 1s not known to the author whether such an example as in (18) (i)
is possible for S=1[0, 1]).
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Further, it follows, for instance, from the characterization of the so-
called (P)-spaces [5] that the space R’ with the norm
(). Xa, X))l = (X7 + x3)"7 + | x4| contains a linear subspace M such that
P, i1s not Isc. An interesting three-dimensional example such that P, is not
Isc for a one-dimensional subspace M (but P,, has a linear selection) is
presented in [10]. In Example (18} (ii} we shall use Corollary (4) to show
that the metric projection of the space of polynomials of degree two or less
with the supremum norm on [0, 1] onto the subspace generated by x? fails
to be lsc.

(18) ExampLes. (1) There exists a metrizable compact space S, a closed
linear subspace X of C(S), and two points s, s, €S such that the set
M={feX f(s,)=f(s,)=0} is a Cebysev subspace of X with discon-
tinuous metric projection.

For example, take X =/, and let M c X be a linear Cebysev subspace of
codimension two with discontinuous metric projection {(e.g., [6]). Then X
can be identified with a closed linear subspace of C(S), where S is the
closed unit ball of X* with the w*-topology. The topological space S is
metrizable since X is separable.

(i1) Let X be the subspace of C[0,1] consisting of all polynomials of
degree at most two. Then the metric projection of X onto the one-dimen-
sional space M generated by the polynomial x” fails to be Isc.

We identify any polynomial ax”+ bx + ¢ with the vector (a, b, ¢). Let
Q: X - R” be defined Q((a, b, ¢))= (b, ¢). Taking an equivalent norm on
R* we can assume that Q is the quotient map X — X/M. Let U be the
closed unit ball of X. We show that Q is not relatively open on U at
/=1(0,0,1). Let V' be a neighbourhood of /in U such that a > —1 for any
(a, b, ¢)e V. We claim that Q(V'}) is not a neighbourhood of Q(f') in Q(U).
For any re (0, 1) define /, e U by f,=( — (r + 1), 2r(r + 1), I —r?). Clearly,
Q(f,) converges to Q(f) for r converging to 0 (r>0). Let re (0, 1) and sup-
pose that there is a g=(a, b, c)e V with Q(g) = Q{f,). Since ge U, we have
g(1)< 1 which gives a < —r(r+2). Take x= —a 'r(r+1). Then x€ (0, 1)
and the assumption ¢ > —1 implies g(x)> 1, a contradiction. Thus Q is not
relatively open on U so that P,, is not Isc by Corollary (4).

We note that in the preceding example the subspace M can be defined,
for instance, by M= {feX:f(0)=0, 4/(1/2)—f(1)=0}. The following
Proposition presents a sufficient condition for the lower semicontinuity of
P, in similar cases.

(19) PROPOSITION. Let S be a set, S, = {sl};’ , a subset of S consisting

of n distinct points, and X be a linear subspace of the linear space of real
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functions on S. Let X be given a norm such that |f(s)| <|f| for any fe X
and s€ S,

Let A=(a; ;) (1<i<m, | <j<n) be a real matrix and

M:{fe XY a; f(s;)=0 for any lgism}.

;=1

Suppose that the following condition is satisfied.

for any sequence (&) with |e,| =1, | < j<n, there is fe X
with || f|| <1 such that
Y oa, f(s)=Y a, ¢ forany 1<i<m. (20)

/=1 j=1

Then M is proximinal and the metric projection P, of X onto M is pointwise
Lipschitz Isc.
Particulary, let X have the property

Jor any sequence (g} with |¢,| =1, 1 <j<n, there is fe X
with f(s;)=¢, for any 1 <j<n. (21)

Then M is proximinal and P, is pointwise Lipschitz Isc for any matrix A.

Proof. Let Q,: X - R" be defined by Q,(f)= (f(s)),... f(5,)) for fe X,
Q.. R"— R™ be defined by Q ,(x)= Ax” for xe R", and let Q be the com-
posed map Q=0 ,  Q,. Denote U the closed unit ball of X and U, the
closed unit ball of /,,.(S,). Of course, the set K= Q ,(U,) is a polyhedron. It
follows from the hypotheses that Q,(U) < Uy, hence Q(U)<= K. Let E, be
the set of extreme points of U,. Since U, is the convex hull of E,, K is the
convex hull of Q,(E,). However, the condition (20) means that
Q (Ey)cQ(U). Thus Q(U)=K so that M is proximinal by Remark (6)
and P, is pointwise Lipschitz Isc by Theorem (3), Lemma (7) (i), and
Remark (2).

(22) ProOPOSITION.  Let S, S, and X be as in Proposition (19). Let
A={(a;;) (1<i<m, 1 <j<n) be a real matrix such that 377_, |a, ;| =1 for
any 1 <i<m, and suppose for any 1 < j< n there is exactly one index i with
a,;#0. Let M < X be defined as in Proposition (19). Then the condition (20)

is equivalent to the following one:

Jor any sequence (¢;) with |e;| =1, 1 <i<m, there is fe X
such that 3'_  a, f(s;)=¢, for any 1 <i<m. (23)

j=

Suppose further that the condition (23) holds. Let f e X\M be arbitrary.
Denote b,= 37 ya, f(s)) for 1<i<m, b=sup {|b,|:1<i<m}, and

640-45 2.5
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o=h "inf{h—|b i 1<i<m, |b,|#b} (put 6=21if |b,|=b for all i). Then
for any geX and any myePy(f) there is a mePy(g) with
| — il <128 Y f—gll (of course, 6 >0 from the definition).

Proof. The implication (20)=-(23) follows immediately from the
assumptions on the matrix 4. Let Q. Q. Q. U, and U, be as in the proof
of Proposition (19) and let K={ye R": |y, <1 for any 1<i<m}. We
have Q(U)c K since Q,(U)=U, and Q,(U,)c K. The condition (23)
means that for any extreme point ¢ of K there is a f e U with Q(f) =e. Thus
Q(U)=K. Particularly, Q ,(U,)cQ(U) so that the condition (20) is
fulfilled. The rest of the assertion follows from Remark (2), Lemma (7) (i),
and the proof of Theorem (3) since the set K is (QP) at any point of its
boundary with é =inf {1 —|y,|: 1 <i<m, |y,|#1} (we put inf J =2).

(24) ExampLEs. Let S be a compact Hausdorfl space, So={s,}/_, a
subset of S, and X a lincar subspace of C(S). If not stated otherwise, the
norm given on X is the usual supremum norm [ f]| =sup {|f(s)|:s€ S},
feX

(1) X =C(S) satisfies condition (21).

(1) Let S=[0,1] and suppose s; <s,< - <s,. Let k=0 be an
integer and let C*” denote the space of all real valued functions on S with
continuous derivatives of order k& or less on S. Suppose that X contains any
function /'€ C*’ such that fis a polynomial of degree 2k + 1 or less on any
subinterval of § disjoint with S,. Then X satisfies condition (21).

(111) Suppose X satisfies condition (21) with certain norm | |, and let
p: X — R be an arbitrary pseudonoerm. Then there exists @ 6 > 0 such that X
satisfies condition (21) with the norm | £/, =sup {|lf o, 0 p(f)}, f € X. This
is clear since we can take § < (sup {p(f):f € F}) ', where Fc X is a finite
set.

Thus, for example, let X be as in (24) (i) and X < C**). We denote
x=inf {5,,, —s,: 1 <j<n}. Then X satisfies condition (21) with the norm

£y =sup LI 13l /7] for k=1 (feX),
while for & =2 we can take the norm

171 =sup LI/ Vel /7l 11207070}, [ e X,

for example.

(iv) Let S=[0,1], So=1{0,1/2,1}, k>1 be an integer and let X be
the space of all polynomials of degree & or less. Then it is easy to show that
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X satisfies condition (21) if and only if k> 3. Suppose further that & =2.
Let A=(a,;) (i=1,2;j=1,2,3) be a real matrix of rank two and

M={feX a, f(0)+a,f(1/2)+a, f{1)=0fori=1,2}.

Suppose that aj ;+a3 ,#0 for j=1, 2, 3. For a fixed subspace M defined in
this way we can suppose a,, =0 without loss of generality. Then it is easy
to show that the condition (20) is satisfied if and only if ¢,;=0 and
sign {a, ;) =sign (a, ;). We recall that in view of Example (18) (i1), P,, fails
to be Isc for a certain matrix A.

Finally, we note that Propositions (19) and (22) can be generalized by
taking an arbitrary real normed linear space X and « finite subset S, of the
closed unit ball of X*.
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